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Abbreviations 
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Abstract:   
 
We describe a framework for estimating the human dose at which a chemical 

significantly alters a biological pathway in vivo, making use of in vitro assay data and an 

in vitro-derived pharmacokinetic model, coupled with estimates of population variability 

and uncertainty. The quantity we calculate, the Biological Pathway Altering Dose 

(BPAD), is analogous to current risk assessment metrics in that it combines dose-

response data with analysis of uncertainty and population variability to arrive at 

conservative exposure limits. The analogy is closest when perturbation of a pathway is a 

key event in the Mode of Action (MOA) leading to a specified adverse outcome.  

Because BPADs are derived from relatively inexpensive, high-throughput screening 

(HTS) in vitro data, this approach can be applied to high-throughput risk assessments 

(HTRA) for thousands of data-poor environmental chemicals. We envisage the first step 

of HTRA to be an assessment of in vitro concentration-response relationships across 

biologically important pathways to derive Biological Pathway Altering Concentrations 

(BPAC). Pharmacokinetic (PK) modeling is then used to estimate the in vivo doses 

required to achieve the BPACs in the blood at steady state. Uncertainty and variability are 

incorporated in both the BPAC and the PK parameters and then combined to yield a 

probability distribution for the dose required to perturb the critical pathway. We finally 

define the BPADL as the lower confidence bound of this pathway-altering dose. This 

paper outlines a framework for using HTRA to estimate BPAD values; provides examples 

of the use of this approach, including comparison of BPAD values with published dose-

response data from in vivo studies; and discusses challenges and alternative formulations.  
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Introduction 
 

Chemical risk assessment and risk management require information on hazard, 

dose response, use and exposure to make decisions protective of human health and the 

environment.  One objective of a chemical risk assessment is to identify exposure levels 

with a reasonable certainty of no harm. Exposures resulting from use of a chemical that 

are below these estimated levels are presumed to have a reasonable certainty of no harm1 

or to be without appreciable deleterious effects during a lifetime2. Hazard-based limits 

currently used to inform risk management include quantities such as the Reference Dose 

(RfD) for non-cancer effects. An RfD is generally derived by estimating the lowest 

human-relevant point of departure (POD) which may be a NOAEL (No Observed 

Adverse Effect Level) or BMD (Benchmark Dose) from a set of laboratory animal 

studies, commonly in rodent and non-rodent species. These are then divided by default 

factors often in the range of 100 to 1000 to account for uncertainty in cross-species 

extrapolation, possible database deficiencies which might lead to a failure to identify the 

most sensitive endpoint, and variability across human populations and life-stages. Where 

available, human data (e.g. from epidemiological studies) is incorporated into estimates 

of acceptable exposures. 

 

EPA defines an RfD as representing “… the quantity of a substance which if 

absorbed on a daily basis over a lifetime, is not expected to pose significant risk of 

adverse health effects”3. Alternatives to an RfD, used in certain decision contexts, include  

allowable daily intake (ADI) and Threshold of Toxicological Concern (TTC)4. An 

important component of many risk assessments is the identification of the Mode of 

Action (MOA) leading to the critical effect, which is the adverse effect with the lowest 

NOAEL or BMD5-7. Identifying the MOA is important because some MOAs are known 

to operate in model species but not humans (or vice versa), meaning that the related 

adverse effect could be discounted (or would have to be accounted for) when determining 

the human RfD. In addition, some MOA (such as genotoxic carcinogenicity) are assumed 

to imply no safe threshold dose, so a different risk assessment approach is called for. An 
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important link between MOA and pathway-based analyses is the tenet that it is sometimes 

possible to relate MOA key events with perturbations of specific pathways. 

 

 Current risk assessment approaches for the majority of chemicals face many 

challenges8, including heavy reliance on data from animal studies. In this paper, we 

outline one possible alternative formulation for determining permissible exposure levels 

from in vitro high-throughput screening (HTS) data and informatic analysis. The resulting 

information could serve as a surrogate for acceptable dose levels derived from animal 

toxicity studies until such studies are available. Such formulations are desirable because 

there are thousands of environmental chemicals for which animal data is limited or not 

available9; a situation that is unlikely to change in the near future. Any alternative to the 

current human health risk assessment approach has to meet several criteria. First, it 

should be based on an understanding of the modes or mechanisms leading to toxicity, 

specifically in humans. Second, it should yield relevant dose-response predictions that 

can be used for setting permissible human exposure levels. Third, it should be at least as 

health protective as current approaches without imposing unnecessarily strict limits on 

chemical use.   

 

 Over the last decade, in vitro toxicity testing approaches have been widely 

implemented. In these approaches, chemicals are evaluated using a single or a battery of 

in vitro assays that probe biological pathways relevant to toxicity. In vitro toxicity testing 

has been advocated for use in the evaluation of environmental chemicals10, and is being 

implemented at the U.S. EPA and NIH through their ToxCast11-12 and Tox2113-14 

programs. The in vitro toxicity testing approach has several key advantages: (1) the cost 

is orders of magnitude less than that for animal testing; (2) human molecular targets and 

cell systems can be directly studied; and (3) hundreds or thousands of chemicals can be 

analyzed in parallel. Using HTS in vitro methods in hazard assessment screening would 

address the question: is there a mechanism by which a chemical can lead to a particular 

adverse effect? Assays are typically run in concentration-response format, so one can 

estimate the relative potency (i.e. effective concentration) of different chemicals to 

perturb biological pathways12.  
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 Here we couple the ability of in vitro assays to quantitatively characterize the 

pharmacodynamics (PD) of a chemical in concentration-response mode with new high-

throughput methods for estimating the corresponding pharmacokinetics (PK) of a 

potential toxicant15. By combining these two types of information, we can estimate the 

external dose that would be required to perturb a biological pathway.  In order to 

complete the analogy with standard risk assessment approaches, we need to incorporate 

uncertainty and variability into the model. One can then calculate a provisional 

acceptable exposure level at the low end of the distribution of the pathway-altering dose 

accounting for uncertainty and variability. We define this value as the Biological Pathway 

Altering Dose, or BPAD. The overall process of estimating the BPAD we define as high-

throughput risk assessment (HTRA).  

   

 The goals of this paper are to outline a framework for using HTRA to estimate 

BPAD values; to provide examples of the use of this approach, including comparisons of 

BPAD values with published Lowest Effect Levels (LELs) and No Effect Levels (NELs) 

from animal toxicity studies; and to discuss challenges and alternative formulations. This 

paper proposes and evaluates a framework for HTRA and identifies incomplete or 

unresolved issues, as a first step towards developing an HTRA model for  decision-

making. .  The immediate goal of HTRA as described here is not to replace standard risk 

assessment methods, but instead to provide input into provisional risk assessments for 

data-poor chemicals. These provisional estimates can then be used to prioritize further 

study of specific chemicals, and could be updated as this new information is collected.  
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The HTRA framework outline 
 

 Our initial goal is to estimate chemical-specific biological pathway altering doses 

or BPADs. A BPAD is tied to a particular biological pathway and so is analogous to an 

estimate of a mechanism or MOA-specific LEL or NEL, with the addition of uncertainty 

and population variability estimates. Although we do not address the equivalent problem 

of estimating exposure in a high-throughput manner, we recognize that this metric is of 

comparative importance. Here, we simply outline the key points of the HTRA-BPAD 

approach, which are illustrated in Figure 1. Implementation details are given in 

subsequent sections. 

 

1. HTRA is built around biological pathways whose structure is derived from a large 

body of in vitro and in vivo studies. A number of publicly available biological 

pathway databases16-18 exist to guide a selection for use in HTRA.  

2. For HTRA, we want to focus on toxicity-related biological pathways, i.e. those 

which, when significantly altered by chemical exposure, are likely to lead to 

adverse effects in vivo10. The distinction between all pathways and toxicity-related 

pathways is analogous to the distinctions between observations leading to NELs 

and NOAELs in traditional toxicity testing. An important area of research 

involves determining linkages between pathways and adverse effects. We 

purposely avoid the term “toxicity pathway”, because there is no real distinction 

between these and normal biological pathways. Operationally, one way we define 

“toxicity-related pathways” is by finding associations (either using statistical 

techniques, or from detailed mechanistic analysis) between the perturbation of a 

pathway or process and the development of adverse outcomes. 

3. For each pathway, we select a representative set of targets to probe, and develop 

in vitro assays to measure effects related to those targets. For the examples given 

here, these targets were selected partly by expert judgment, and partly by the 

availability of off-the-shelf high-throughput assays. Although assays derived from 

other species that share significant sequence similarity at the specific target gene 

can also be used, we would primarily focus on human targets and cells for human 
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risk assessment.  Assays can be as simple as binding to a single protein, or as 

complex as whole genome microarrays or other genome-scale measurements.  

4. All assays must be run in concentration-response format in order to yield values 

for the BPAC (Biological Pathway Altering Concentration). 

5. It may be  necessary to run several assays associated with a pathway and use a 

systems-level model to integrate the resulting PD data for estimating BPAC19. 

This model may need to account for some assays being overly sensitive (yielding 

false positives) and some being under-sensitive (yielding false negatives.) This 

model should also estimate the PD-related uncertainties and population 

variability20 and must characterize the population distribution of the BPAC and its 

uncertainty using probability distributions.  

6. Population-PK modeling is used to estimate the external dose through the relevant 

route of exposure that would lead to the internal BPAC (dose-to-concentration 

scaling function). The PK model must also estimate PK-related uncertainties and 

variability, and then yield a probability distribution for the dose-to-concentration 

scaling function. In the case of the examples provided here, an oral dose leading 

to the internal BPAC was used. 

7.  The PD and PK probability distributions are then combined to yield a probability 

distribution of the dose at which the chemical would significantly perturb the 

biological pathway. We calculate a mean value and confidence intervals from this 

distribution and set the BPAD to be the lower dose boundary of the confidence 

interval.    
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Biological pathways and their linkage to adverse effects 
 

Biological pathways are a key connection between MOA-based risk assessment 

and HTRA when they are mechanistically linked to key events in toxicity modes of 

action21. Pathway-level perturbations can be assessed by testing chemicals in vitro using a 

suite of assays that measure molecular targets and downstream consequences in the 

pathway, e.g. binding to key enzymes or receptors, or differential regulation of 

downstream genes or proteins. By running assays in concentration-response format, one 

can derive a characteristic concentration (e.g. AC50 or concentration at which activity is 

50% of its maximum) for each chemical-assay pair. Additionally, in contrast with in vivo 

studies, it is possible (at least in selected cases) to measure response at arbitrarily closely-

spaced concentrations and to measure response down to very low concentrations. This 

eliminates the need to perform low-dose extrapolation using an assumed model – the low 

dose end of the curve is directly measured. Figure 2 shows examples of concentration-

response data, in this case derived from a pair of estrogen receptor assays22. 

 

 In some instances, there may be a direct link known between an MOA and a 

corresponding pathway. An example is cholinesterase inhibition. The in vivo key event is 

measurable cholinesterase inhibition in a blood or tissue sample. The in vitro pathway 

perturbation is measured by inhibition of cholinesterase activity in a cell-free or cell-

based assay. A more complex example is liver hypertrophy driven by peroxisome 

proliferation23-25. In vivo, histopathology can clearly detect peroxisome proliferation. In 

vitro, numerous assays can measure activity in the underlying peroxisome proliferator-

activating receptor (PPAR) pathway.  
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In vitro screening, biological pathways and the Biological 
Pathway Altering Concentration (BPAC)  
 

In the first step of HTRA, we use HTS in vitro assays to measure the extent of 

chemical-induced perturbation of a biological pathway as a function of concentration. As 

described above, assays can measure direct binding to key targets, downstream changes 

of specific biomarkers, or cellular consequences such as cell shape changes or cell death. 

In some cases, it will be possible to use a single assay to measure pathway perturbation 

(e.g. cholinesterase inhibition), while in others one may need to integrate over the results 

of multiple assays. The use of microarrays to estimate pathway perturbation is an 

alternative or complementary approach for cases where relatively few chemicals need to 

be examined26. HTS-based pathway-based assays offer an alternative and promising 

technology for screening thousands of chemicals in parallel27. 

 

A significant advantage of the current HTS assays is that the majority can be run 

against human targets or in human cells.  This eliminates the need for cross-species 

extrapolation, but still requires in vitro to in vivo extrapolation. There are many ways to 

estimate the BPAC, but it remains a challenge to determine which is most appropriate.  

For the illustrative examples presented below, we used a simple method for estimating 

the BPAC. This approach takes the collection of assays that map to pathway genes or 

relevant cellular phenotypes and sets the BPAC for the specified chemical to be the 

minimum AC50 for any of those assays (See Figure 2).  

 

Finally, we need to address uncertainty and variability in our estimate of the 

BPAC. It is desirable to separately characterize the population variability of the BPAC 

and its uncertainty because risk assessment uses variability and uncertainty information 

in different ways. Ideally, population variability information would be available for this 

analysis, along with a characterization of the uncertainty about that variability.  For our 

examples, and as a suggested default in the absence of an estimate of population 

variability, we assumed that the population distribution of the BPAC is log-normal, and 

that the ratio of the geometric mean (or, equivalently, the median, because of the 
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assumption that the population distribution is log-normal) to the first percentile of the 

population distribution is . This factor is motivated by partitioning the conventional 

10-fold uncertainty factor for variability among people into equal-sized portions due to 

pharmacodynamics and pharmacokinetics.  Not all regulatory bodies use the same 

partition, and this particular factor is intended for illustration, not prescription.  

Alternative approaches to assessing variability28 have been based on estimates of 

appropriate variances from collections of human data.   

 

We do not have a statistically rigorous characterization of the uncertainty about 

the parameters of this assumed population distribution, but for illustrative purposes we 

assume the logarithm of the population median and log-scale standard deviation are 

known to within about a factor of 2 (strictly, that the 1st and 99th percentiles of the 

uncertainty distribution are four-fold apart, and that the uncertainty distribution is log-

normal).  Further work needs to be done to better characterize the variability and 

uncertainty of these parameters. 
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From in vitro concentration to in vivo dose: Reverse 
Toxicokinetics  
 

This section addresses the task of estimating the in vivo dose that corresponds to 

the BPAC. A variety of PK models can be used to estimate internal concentration from 

external dose (or exposure). These models can be reversed to yield the dose (exposure) 

corresponding to the BPAC. For the present purpose, we require a method that is general 

enough to be used on a large number of chemicals. The most detailed PK models, usually 

called physiologically-based pharmacokinetic (PBPK) models29-30, represent distribution, 

metabolism and excretion of a chemical using multi-compartment models that account 

for partitioning between multiple organs and tissues. One challenge to using detailed 

PBPK models lies in identifying the structure of the model and the values of the 

corresponding coefficients for each chemical. Generating a complete “validated” model 

can take years and require the generation of a significant amount of chemical-specific 

experimental data.  

 

 An alternative to detailed PBPK modeling is to use simpler models that make 

conservative assumptions and require a small number of parameters whose estimates are 

amenable to high-throughput data generation. One class of models is purely 

computational, where all parameters are computationally generated, usually through 

quantitative structure activity relationship (QSAR) models. These models have been used 

to estimate body burden of chemicals that are not metabolized but which 

bioaccumulate31. Here, we focus on an alternative approach more suitable to chemicals 

that are largely eliminated through metabolism and renal excretion, which is called 

Reverse Toxicokinetics (RTK) or Reverse Dosimetry15, 32-33. In this approach we use a 

one compartment model and make default assumptions such as: chemicals are eliminated 

wholly through metabolism and renal excretion; renal excretion is a function of the 

glomerular filtration rate and the fraction of unbound chemical in the blood (i.e., no 

active transport); and there is 100% oral absorption. Using these assumptions in our 

published RTK analysis15, only two experimental chemical-specific parameters are 

required to generate an estimate of the plasma concentration of the chemical at steady 
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state per unit dose. These are the rate of disappearance of parent via hepatic metabolism 

(called intrinsic clearance) and fraction bound (or conversely unbound) to plasma 

proteins. Both of these parameters can be measured experimentally in a relatively high 

throughput manner.  

  

The result of this effort is a chemical-specific ratio of the concentration at steady 

state (Css) divided by the dose rate (DR), yielding a concentration-to-dose scaling factor 

with units of µM/ (mg/kg/day). One simply divides the BPAC by the Css/DR ratio to 

calculate the steady-state dose required to yield a steady-state BPAC. The estimate of 

Css/DR ratio implicitly contains uncertainties; for instance, the assumption of 100% oral 

absorption and the assumption that the concentration at the site of action will equal the 

concentration in plasma. There are also uncertainties in the measurements of 

experimental values for fraction unbound and intrinsic clearance. Population variability 

in PK arises from several factors including genetic differences in xenobiotic metabolizing 

enzymes and heterogeneity of liver mass.  The PK software application we use 

(SimCyp32-33) allows us to directly include some sources of population variability, but the 

current model does not explicitly account for model and parameter uncertainty. 
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From activity dose estimates to the Biological Pathway 
Altering Dose (BPAD) – Incorporating uncertainty and 
variability  
 

We have described how to estimate the concentration at which a biological 

pathway of interest is activated (BPAC), plus the Css/DR ratio which scales internal 

concentrations to oral doses. The dose that corresponds to the BPAC is simply 

BPAC/Css/DR. While this gives a central estimate, we need to account for uncertainties 

and variability in each of the estimated values and their resulting ratio.  

 

Our PD estimates are subject to uncertainty. For the in vitro assays, we know that 

there is statistical noise in the data, which will lead to uncertainties in estimates of the 

AC50. For some pathways, there may be important biological activity well below the 

AC50, while for other pathways, relevant in vivo effects will only occur when the assay 

target is fully activated (or inhibited), well above the AC50. Assays in some cases will 

yield false positive or false negative results, due to a variety of assay artifacts which are 

not always easy to detect34. Further, assays currently in use may not detect the most 

sensitive signal of pathway activation.  

 

Likewise, the estimates of PK parameters are uncertain. There are uncertainties in 

the estimates of the experimental parameters such as intrinsic clearance and plasma 

protein binding. Any PK model will have to make assumptions about the structure of the 

model used for a given chemical (e.g., in number and types of compartments). For 

instance, our RTK method assumes that estimated blood concentrations are a good 

surrogate for the in vitro media/buffer concentrations in the HTS assays. 

 

There is population variability surrounding PD, for example due to the genetic 

variation of an enzyme or receptor to which the chemical binds, and which then triggers 

downstream pathway-based processes. As already mentioned, there is significant PK 

population variability, for instance in xenobiotic metabolism, due to intrinsic genetic 

variation, and variability due to life stage, health status and other factors. 
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 Since we expect population variability, and uncertainty about it, in both the BPAC 

and Css/DR, the same will be true for their ratio, the BPAD.  For purposes of hazard 

characterization, we propose to set the critical value of the BPAD to correspond to a 

small percentile, say p%, of the population distribution of the BPAD (designated the 

BPAD100-p, because (100 – p)% of the population would exceed that level, and so, in 

some sense p% would be protected from that level of exposure), and use that level and its 

lower 95% confidence bound (BPADL100-p) to characterize a chronic dose suggested to be 

of concern. Technically, BPAD100-p is a permissible exposure level that accounts for 

population variability and BPADL100-p is the permissible exposure level additionally 

accounting for uncertainty. For the examples presented in the next section, we assume the 

population distribution of the Css/DR is log-normal, and we estimate the population 

geometric standard deviation from the confidence limits.  The ratio BPAC/Css/DR is then 

also log-normal. As for the BPAC, we presume to know the parameters of the population 

distribution of Css/DR (the geometric mean and standard deviation on the log scale) to 

within a factor of 2.  We focus on the BPAD99, and use Monte Carlo sampling to generate 

a confidence interval for the BPAD99, allowing us to calculate BPADL99. 

 

The center of the BPAD distribution is analogous to an LEL, although it is 

explicitly the dose at which one would expect to see 50% of maximal perturbation for the 

pathway. The BPADL for a particular pathway is analogous to a NEL (no effect level) 

divided by safety factors. The NOAEL from an animal study is the lowest NEL over all 

effects that are considered by a particular regulatory agency to be adverse and relevant. 

To make an HTRA analog to the NOAEL and the NOAEL-related RfD, we need to 

classify pathway perturbations as adverse or not. Adversity is an important issue 

requiring more research and eventually policy development to identify the relevant, 

adverse minimum BPADL for a chemical or stressor. Initially, we foresee the primary 

utility of HTRA in prioritization of chemicals for targeted testing based on pathway-

derived BPADL values, and would do this based on our confidence that a particular 

pathways perturbation is linked to adversity. 
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Example 1: Bisphenol A estrogenicity in vitro vs. in vivo 
reproductive toxicity 
  

As a first example, we consider the estrogenicity of Bisphenol A (BPA) relative to 

the reproductive toxicity of BPA35-36. BPA is a high production volume (HPV) chemical 

widely used in manufacturing polycarbonate plastics and epoxy resins, and humans 

appear to be exposed primarily through food packaging uses37. This is a useful first 

illustration of the BPAD approach because of the direct link between activity at a single 

molecular target, the estrogen receptor (ER) ESR1 (formerly known as ERalpha) that can 

be measured in vitro, and an in vivo effect observed in a rat reproductive model. BPA in 

vitro pharmacology identifies it as an ER agonist in all six relevant ToxCast assays (listed 

in Table 1). If we assume that the molecular key event leading to positive findings in 

female rats from the multigeneration reproduction test is due to BPA estrogenicity, then 

the ER BPAD should provide an estimate of the corresponding in vivo LEL and NEL. 

The ToxCast assays provided six ER agonist or binding AC50 values ranging from 0.6 to 

1.7 µM12. To calculate a conservative BPAD, the lowest ToxCast AC50 is selected (0.64 

µM for Attagene Factorial cis ERE assay). We then consider population variability in 

both the BPAC and the Css/DR, and the uncertainty about estimates of the population 

parameters. The assay results used here are not directly amenable to producing estimates 

of population variability; however, it has become standard practice to quantify variability 

in the human population with a ten-fold uncertainty factor, comparing the population 

median to a lower quantile (for our purposes, the 1 percentile).  This is generally further 

divided into a PD and PK component8.  For illustration purposes, we next estimate the 

PD variability, while the PK variability is explicitly incorporated in the SimCyp 

confidence intervals.  For a log-normally distributed variable, this corresponds to a 

standard deviation on the log scale of 0.49. The median of the estimated population 

distribution of Css/DR is 0.29, with an estimated standard deviation on the log scale of 

0.39.  The uncertainty of these values is not currently quantified, but for illustrative 

purposes we assume the values are relatively uncertain, with coefficient of variation of 

the uncertainty distributions at about 36% (corresponding to knowing the value of the 

parameter to within about a factor of two).  Monte Carlo sampling from log-normal 
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distributions around the estimated population parameters gives a BPAD99 of 0.44 

mg/kg/day, with lower one-sided confidence limit, BPADL99, of 0.16 mg/kg/day. 

 

 In vivo, Tyl et al. found diminished female reproductive performance and 

decreased ovarian weight in the rat reproduction test at 500 mg/kg/day, and an NEL of 50 

mg/kg/day36, The NEL is adjusted for uncertainty/variability (NEL/100) to yield a value 

of 0.5 mg/kg/day, close to the in vitro ER BPADL99 of 0.16 mg/kg/day.  
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Example 2: Conazole CAR/PXR activity in vitro vs. in vivo 
hepatotoxicity 
  

To further illustrate the ideas in the previous sections, we apply HTRA to a set of 

conazole fungicides. One concern with conazoles is that many of them cause a variety of 

liver toxicities in rodents, including hypertrophy and tumors38-39. One pathway activated 

by most conazoles, and believed to be involved in these liver pathologies, is the 

constitutive androstane receptor / pregnane X receptor (CAR/PXR) signaling pathway40-

41. In the ToxCast project12 we evaluated 14 conazoles in a large battery of assays, many 

of which map to the CAR/PXR pathway. We also converted in vitro AC50 values from 

the ToxCast assays (concentration response) to equivalent in vivo values for humans 

using RTK. As described above, we calculated the BPAD distribution corresponding to 

the lowest AC50 across the CAR/PXR-related assays in ToxCast, listed in Table 1. We 

then compared the BPAD distribution with liver hypertrophy-related LEL, NEL and 

NEL/100 values derived from rat and mouse 2-year chronic/cancer studies. Liver 

hypertrophy alone is not considered an adverse effect that would lead to a LOAEL 

(lowest observed adverse effect level) and NOAEL, so in this case we use LEL and NEL 

(lowest and no effect levels, respectively). Using data from both mouse and rat chronic 

studies42-43, we identified the lowest dose at which either liver hypertrophy or liver 

weight increase was observed, yielding the liver-hypertrophy LEL. We then set the 

corresponding NEL to be the dose below the LEL, or LEL /10 if the effect was observed 

at the lowest dose tested.  

 

 The results of this comparison are shown in Figure 3. For each chemical, we 

show a box corresponding to the variability-derived (1%-99%) confidence interval 

around the median BPAD and whiskers giving the uncertainty-derived 95% confidence 

intervals around the ends of the uncertainty range. The BPADL99 value is designated with 

a red circle; the LEL with a blue box; the NEL with a gray triangle; and NEL/100 with a 

red triangle. We also show the estimated exposure levels based on food residues, all of 

which are well below the BPAPL99 values. Note that for two chemicals (iprodione and 

imazalil) exposure estimates were not available. 
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 A first observation is that in most cases, the BPADL99 is within a factor of 10 of 

the NEL/100, which lends confidence to the use of this approach in more general cases. 

Using a Kendall rank-correlation test, we see a significant correlation between BPADL99 

and NEL/100 (p=0.025). This is of particular interest given wide uncertainties going into 

both estimates. Second, in 9 of 14 cases, the BPADL99 is at or below the NEL/100. This 

suggests that we can potentially use the BPADL99 to yield a first order estimate for an 

upper permissible chronic exposure level in the absence of animal data.  
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Discussion 
 

Here we have presented a framework to investigate the application of in vitro 

pathway-based risk assessment for environmental chemicals. BPADs are in vitro analogs 

of in vivo point of departure doses. We posit that BPADs could be used to provide 

provisional estimates of permissible or acceptable exposure levels for data poor 

chemicals, based upon discovering which pathways are significantly altered by a 

chemical, and at what concentration those perturbations occur in vitro, and then using a 

PK model to estimate the external dose that would produce the internal concentration that 

caused pathway perturbation. Both the PD and PK estimates incorporate uncertainty and 

variability, and when combined yield a probability distribution for the pathway-altering 

dose. The BPAD99 is then calculated as a lower percentile of this distribution, with 

emphasis on its lower one-sided 95% confidence bound, the BPADL99. We have 

presented examples where BPADs and animal-based LEL and NEL values were 

compared, and these have yielded interesting insights, including the fact that BPAD 

values tend to be below or at most a factor of 10 higher than the NEL/100.  

 

 HTRA can be compared with the currently used regulatory testing paradigm for 

food use pesticides and other chemicals for which extensive testing is required. (An 

alternative, and perhaps more apt comparison is with data requirements for the large 

number of data poor chemicals.) The traditional testing strategy uses relatively high-dose 

animal tests one chemical at a time to observe what toxic endpoints occur. These tests 

provide holistic evidence of toxicity across many organs and over long time scales, and 

are largely hypothesis free (or hypothesis generating). These tests may then be followed 

up with more mechanistic studies to understand the underlying basis of toxicity, and to 

provide information needed to better inform extrapolation from animal to human effects 

and from high doses to typical low doses to which humans will be exposed. With HTRA, 

we run hundreds to thousands of chemicals in parallel, in human-based assays 

corresponding to pathways for which there is previous evidence of linkage with toxicity-

related endpoints. Pathways are probed one at a time, and an overall HTRA profile is 

built up from multiple pathway-based tests.  
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The basic approach presented here can be extended in a number of ways, some of 

which are described below. A recent commentary by Crump and colleagues44 addressed 

some of these issues and pointed out related challenges, in particular with estimating 

altering concentrations, performing PK modeling and treating uncertainty and variability. 

One particular issue they raise is the danger of making the model too complex in order to 

better mimic the in vivo situation. We agree with this, and emphasize that our goal is not 

to replace current testing strategies, but instead to develop a new first tier testing 

approach for data poor chemicals.  By keeping the framework relatively simple, the 

transparency of the approach is facilitated. This is especially important so that all 

stakeholders can evaluate the model. Extending this transparency, all data and software 

used in HTRA should be well documented and made public.  

 

Defining biological pathways and linking them with adverse effects is a key 

concept in the NRC Toxicity Testing in the 21st Century report10.  The use of toxicity 

pathways has been widely discussed over the past few years, yet they remain an ill-

defined concept. One issue is that biological pathways themselves are not systematically 

defined, and a second is that there has not been a concerted effort to organize information 

linking chemicals, targets (genes, proteins), biological pathways and their functionally 

important modular components, key events, MOA and adverse effects. A database linking 

all of these types of information together would allow data mining algorithms to find key 

gene/protein networks whose perturbation would be a risk factor for toxicity.  The 

ToxCast in vitro toxicity testing data, publicly available via ToxCastDB43, is an important 

step in linking chemicals to perturbation of biological pathways11-12.  Several other public 

databases also contain parts of the puzzle, including the Comparative Toxicogenomics 

Database (CTD)45-46 and PharmGKB47 which link genes and chemicals; OMIM48 which 

links genes and disease; KEGG17, 49 and  Pathway Commons18 which contain gene-

pathway information; and the EPA Aggregated Computational Toxicology Resource 

(ACToR)50-51, DSSTox52, ToxRefDB 42-43, 53-54 which link chemicals and adverse effects. 

An important piece which is lacking is a database of chemicals and their toxicity MOA. 
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EPA’s ToxCast program is constructing a database and tools to link all of this data 

together12, but this effort will require help from a much broader community.  

 

One way to approach this problem is to decide when we can equate in vitro 

activity with in vivo adversity. In some cases (which we call Class 1), the link between in 

vitro activity and adversity is clear (e.g. cholinesterase activity). There is a single target 

which, if significantly perturbed, can lead directly to undesirable phenotypic changes. 

Class 1 could be further subdivided. For instance, Class 1a would be a pathway that is 

normally off, and gets triggered by an exogenous agent (e.g. genotoxicity); whereas a 

Class 1b pathway would normally be active, but its level is modulated by an exogenous 

agent, and when that is beyond the realm of homeostasis, damage occurs. Next is an 

intermediate case (Class 2), where there is an association (statistical or otherwise) 

between perturbations of a pathway and some disease outcome, but the details and causal 

linkage is not clear (e.g. PPAR pathway perturbations and potential linkage with human 

disease). Finally, there are many other targets and pathways (Class 3), for which no clear 

linkage between in vitro activity and adverse in vivo outcomes is currently known.  

 

 Before we can make widespread use of this type of approach, there are a number 

of challenges that need to be addressed, four of which are discussed below.  

 

Estimating concentrations at which pathways are perturbed: We use the results of in vitro 

assays to determine if a chemical perturbs a pathway and if so, over what concentration 

range. Because pathways form complex networks that can contain feed-forward and 

feedback loops, we need to probe the pathway at multiple points because any single assay 

may miss an important effect. In addition, all assay technologies yield some fraction of 

false positives and negatives, so that it is best to probe pathways using assays from a 

variety of technologies. These and other factors need to be considered in order to develop 

robust criteria for determining when a pathway of interest is significantly perturbed, and 

determining appropriate variability and uncertainty metrics. Our CAR/PXR example is 

one case where it is possible to refine the estimate of the BPAC by integrating over all of 

the assays that map to the pathway.  A recent publication describes one approach for 
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integrating several nuclear receptor pathways associated with rodent liver tumors19. We 

are investigating a number of other ways to do this, using statistical, Bayesian methods, 

pathway-level modeling, and agent-based cell simulations in ”virtual tissues” in our 

Virtual Liver and Virtual Embryo projects. Another issue is that some classes of 

environmental chemicals are not currently amenable to HTS analysis; in particular, 

volatile chemicals and small molecular weight chemicals that are not expected to directly 

interact with cellular macromolecules in a pharmacologically relevant fashion.  

 

 

PK modeling of in vitro concentration to in vivo dose: We described one method for 

estimating the external dose that is required to yield a specified plasma concentration of a 

chemical, but there are other PK modeling approaches that could be used. Special cases 

that need to be dealt with include: chemicals that bioaccumulate to a significant extent; 

chemicals that act acutely or through effects at peak concentrations; chemicals that cause 

toxicity in compartments where there is not full partitioning with plasma (fetus, brain, 

testis, milk); analysis of chemicals for which active transport is important; and chemicals 

for which there is significant non-hepatic metabolism. We incorporate population 

variability into our current model in an approximate way, but uncertainty is not well 

captured. 

 
Biotransformation and other properties in vitro systems lack: A major criticism of using 

in vitro assays to predict chemical toxicity is that cells are not tissues, organs or people, 

i.e. they lack many of the essential interactions that are required to trigger key events in 

an MOA, or which could prevent key events from being triggered through adaptive 

responses. Most current HTS assays do not include the possibility for biotransformation, 

which means that we can make statements about the activity of a parent molecule, but not 

any potentially more or less toxic metabolites. Technologies are being developed to 

address this issue55, but are not currently robust enough to yield relevant results. Most 

assays do not include multiple cell types, and so do not incorporate complete paracrine 

signaling pathways (e.g. those that are needed for the development of an immune 

response). There are a variety of emergent properties that one will only see with mixtures 
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of cell types, appropriate extracellular matrices and 3-dimensional geometries. Many cell-

based assays are carried out in immortalized cell lines that have become highly adapted to 

growth in vitro and no longer represent their tissue of origin (although use of primary 

cells for in vitro assays is being increasingly used). Cell-based assays are short term 

(hours to days) and cannot be used to directly address the effect of chronic exposures, for 

instance through accumulation of mutations. All of these factors lead to uncertainty in our 

BPAD estimates and need to be accounted for in some way. 

 

Relevance of in vitro activity to in vivo toxicity: There are a variety of issues related to 

the extrapolation from in vitro to in vivo activity, and in particular, to adversity. These 

include issues related to chronic exposures (months or years) in animal studies as 

opposed to the hours or days for exposure in the in vitro systems. Another has to do with 

life-stage sensitivity. A related set of issues have to do with adaptive responses which 

may occur in the intact animal, and over long times, but which are not manifested in a 

short-time cell assay. We cannot answer all of these here, but restate the basic premise of 

using in vitro assays in toxicology: namely that for certain disease types, direct 

perturbation of a target or pathway is a necessary condition for the disease to occur. This 

is the basis of the notion that there are key molecular initiating events in toxicity modes 

of action7. Because these molecular actions are necessary, but not sufficient, in vitro 

assays can be overly sensitive in predicting whether a chemical can lead to adversity, but 

can give specific information on the modes of action that could be driven by chemical 

exposure. In the ToxCast program, we are using statistical methods to link pathway-level 

perturbations with adverse outcomes. This is done by using in vitro and in vivo toxicity 

data on common sets of chemicals in the ToxCast12 and ToxRefDB42, 53-54 data sets, and 

finding statistical associations. We then follow-up on strong associations by building a 

case for biological plausibility by using external validation data (chemicals not used in 

the initial association analysis) and detailed mechanistic information from the literature. 

In the case that multiple pathways linked to a given adverse effect are perturbed by a 

chemical (generating multiple BPADs), we would use the lowest one as the starting point 

for HTRA, in the same way that the most sensitive adverse endpoint seen in an animal 

study is often used in setting a LOAEL. 
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Dealing with uncertainties and variability: We have already mentioned the need to better 

estimate levels of uncertainty and variability in the modeled PD and PK parameter 

values. Of note are recent papers that measure population variability of response to 

chemicals in vitro using a collection of genetically characterized mouse strains and 

human cell lines20, 56. There is additional uncertainty involved in the models themselves 

that should be considered, and a need to optimize the way the separate uncertainty and 

variability distributions are integrated. The work of Rusyn and co-workers is an example 

of how one can use in vitro data derived from testing the HapMap cell lines to assess PD 

population variability. One could use their approach to examine variability, in this case 

genetic, at the pathway level20.  

 

 To conclude, our initial goal is to develop a tool for performing rapid evaluations 

of the potential hazard for data poor chemicals and for setting priorities among those for 

more detailed testing. One can envision variants of this approach that make use of 

chemical structure combined with in vitro data to estimate risk across classes of 

chemicals in the same way that categories are currently evaluated. It should also be 

possible to formulate methods to make first-order estimates of BPADs for mixtures.  

 

This HTRA approach lends itself to a tiered testing approach which would not go 

straight from a finding of high predicted hazard in HTRA to a recommendation of 

extensive animal testing. Furthermore, this HTRA approach is consistent with a new EPA 

program advancing the next generation of risk assessment (NexGen) and proposing a 

tiered approach to risk assessments57. In one possible tiered testing approach, a large set 

of chemicals would be analyzed using some variant of BPAD-HTRA. Those with the 

lowest BPAD values, and which therefore potentially pose a risk at the lowest exposures, 

would go into a second, still in vitro tier. The second tier would first include the use of 

more complex and in depth in vitro analysis, using additional assays in the implicated 

biological pathways, different cell types and possibly model organism tests. Any toxicity-

related data from structural analogs with of the Tier 1 chemicals should also be included. 

The second tier should also estimate potential exposures. If the combined, Tier1-Tier 2 
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BPADL approaches exposure levels likely to be encountered in the environment, then the 

chemical would become a candidate for even more extensive testing and modeling using 

in silico, in vitro, and in vivo approaches.  

 

 An alternative track to be followed for chemicals with high apparent risk in Tier 1, 

2 is to consider replacements. This would follow the green chemistry / sustainability 

approaches being developed by the EPA58-59. If there is a functionally equivalent 

chemical (from an end-use standpoint) with a significantly greater BPAD, and no 

significant sustainability liabilities, then this analysis could help guide a replacement 

strategy. 
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Tables 
 

Assay Gene Description Assay Description Example 

ATG_ERa_TRANS 
ESR1 
estrogen receptor 1 [human] 

Transactivation multiplexed 
reporter gene assay22 

ER 

ATG_ERE_CIS 
ESR1 
estrogen receptor 1 [human] 

Transactivation multiplexed 
reporter gene assay22 

ER 

NCGC_ERalpha_Agonist 
ESR1 
estrogen receptor 1 [human] 

Quantitative HTS reporter gene 
assay27, 60 

ER 

NVS_NR_bER 
ESR1 
estrogen receptor 1 [bovine] 

Cell-free competitive binding 
assay61 

ER 

NVS_NR_hER 

ESR1 
estrogen receptor 1 (mutant) 
[human] 

Cell-free competitive binding 
assay61 

ER 

NVS_NR_mERa 
ESR1 
estrogen receptor 1 [mouse] 

Cell-free competitive binding 
assay61 

ER 

ATG_CAR_TRANS CAR / NR1I3 
nuclear receptor subfamily 1, group 
I, member 3, Constitutive 
androstane receptor [human] 

Transactivation multiplexed 
reporter gene assay22 

CAR 

NVS_NR_hCAR_Antagonist CAR / NR1I3 
nuclear receptor subfamily 1, group 
I, member 3, Constitutive 
androstane receptor [human] 

Cell-free competitive binding 
assay61 

CAR 

ATG_PXR_TRANS PXR / NR1I2, nuclear receptor 
subfamily 1, group I, member 2, 
Pregnane-X receptor [human] 

Transactivation multiplexed 
reporter gene assay22 

PXR 

NCGC_PXR_Agonist_human PXR / NR1I2, nuclear receptor Quantitative HTS reporter gene PXR 
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subfamily 1, group I, member 2, 
Pregnane-X receptor [human] 

assay27, 60 

NVS_NR_hPXR PXR / NR1I2, nuclear receptor 
subfamily 1, group I, member 2, 
Pregnane-X receptor [human] 

Cell-free competitive binding 
assay61 

PXR 

ATG_RXRb_TRANS RXRB - retinoid X receptor, beta 
[human] 

Transactivation multiplexed 
reporter gene assay22 

CAR / 
PXR 

ATG_RXRa_TRANS RXRA - retinoid X receptor, alpha 
[human] 

Transactivation multiplexed 
reporter gene assay22 

CAR / 
PXR 

ATG_LXRa_TRANS LXR / NR1H3 - Liver-X receptor 
alpha [human] 

Transactivation multiplexed 
reporter gene assay22 

 LXR 

ATG_DR4_LXR_CIS LXR / NR1H3  - Liver-X receptor 
[human] 

Cis-activation multiplexed 
reporter gene assay22 

LXR 

NCGC_RXRa_Agonist RXRA - retinoid X receptor, alpha 
[human] 

Quantitative HTS reporter gene 
assay27, 60 

CAR / 
PXR 

CLZD_ABCB1 ABCB1 - ATP-binding cassette, 
sub-family B (MDR/TAP), member 
1 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

CAR 

CLZD_ABCG2 ABCG2 - ATP-binding cassette, 
sub-family G (WHITE), member 2 
[human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

CAR 

CLZD_CYP2B6 CYP2B6 - cytochrome P450, 
family 2, subfamily B, polypeptide 
6 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

CAR 

CLZD_CYP2C9 CYP2C9 - cytochrome P450, 
family 2, subfamily C, polypeptide 
9 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

CAR 

CLZD_CYP2C19 CYP2C19 - cytochrome P450, 
family 2, subfamily C, polypeptide 
19 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

CAR 
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CLZD_CYP3A4 CYP3A4 - cytochrome P450, 
family 3, subfamily A, polypeptide 
4 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

PXR 

CLZD_GSTA2 GSTA2 - glutathione S-transferase 
alpha [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

PXR 

CLZD_UGT1A1 UGT1A1 - UDP 
glucuronosyltransferase 1 family, 
polypeptide A1 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

 

CLZD_SLCO1B1 SLCO1B1 - solute carrier organic 
anion transporter family, member 
1B1 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

 

CLZD_SULT2A1 SULT2A1 - sulfotransferase family, 
cytosolic, 2A, 
dehydroepiandrosterone (DHEA)-
preferring, member 1 [human] 

Gene expression assay in human 
hepatocytes  
(24 and 48 hour readouts)62 

 

ATG_HNF4a_TRANS HNF4A - hepatocyte nuclear factor 
4, co-factor for CAR and PXR 

Quantitative HTS reporter gene 
assay27, 60 

 

ATG_PBREM_CIS CAR and PXR response element Quantitative HTS reporter gene 
assay27, 60 

 

 

Table 1: Description of ToxCast assays used in examples for ER activity related to reproductive toxicity, and CAR / PXR activity 

related to liver hypertrophy.  

 

 



 

 

Figure Legends 
 

Figure 1: Schematic of the High-Throughput Risk Assessment (HTRA) process, 

coupling in vitro assay data quantitatively characterizing pharmacodynamics (PD) of a 

chemical with high-throughput methods for estimating the corresponding 

pharmacokinetics (PK) of a potential toxicant. See text for a full description of the HTRA 

process. 

 

Figure 2: Example concentration-response curves for Bisphenol A in two estrogen 

receptor assays from the ToxCast program. These assays use multiplexed reporter gene 

technology in a trans-activating mode (left) and cis-activating mode (right)22 . The y-axis 

is in units of fold-change. Determination of the AC50 (denoted by the vertical bar with 

error bands) and associated confidence intervals factor into uncertainties in the estimation 

of the BPAC. 

 

Figure 3: Comparison of HTRA BPAD distributions with LEL and NEL values for liver 

hypertrophy from animal studies on the 14 conazole fungicides in Phase 1 of ToxCast. 

BPADs are calculated as described in the text. For each chemical, the black box gives the 

population-variability-derived (1%, 99%) confidence intervals about the median BPAD. 

The whiskers indicate uncertainty-derived 95% confidence intervals about the extremes 

of the variability confidence interval. The BPADL99 is indicated by a red circle; the LEL 

by a blue box; the NEL by a gray triangle and the NEL/100 by a red triangle. Estimated 

chronic exposure levels from food residues are indicated by vertical red lines. All values 

are in mg/kg/day.   
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